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Critical exponents of the dilute Ising model from 
four-loop expansions 
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V I Ulyanov (Lenin)  Electrical Engineering Institute, Leningrad 197022, USSR 

Received 25 January 1989 

Abstract. Four-loop expansions of the coefficients of the Callan-Symanzik equation for 
3~ and ZD dilute Ising models are  calculated. Fixed-point coordinates and  critical 
exponents a re  estimated by two methods of summation of double  series: a generalisation 
of the Pade-Bore1 approximation and  the first confluent form of the E algorithm of Wynn. 
Summation of the double  series for the 2 D  dilute lsing model gives exponents very close 
to exponents of the pure lsing model, in accordance with the exact solution. The two 
methods a re  also applied to summation of single-variable series of pure Ising and  polymer 
models,  both in 3D and  ?D cases. Both methods are  shown to provide closs agreement 
between present estimates and  results obtained earlier either exactly in conformal invariant 
theories ( Z D )  o r  numerically with high accuracy (3D) .  An additional test is provided by 
estimation of critical exponents of the 2D O ( n )  model for n = -1. The m e t h d s  tested this 
way are used to calculate critical exponents of the 3~ dilute Ising model.  The values 
obtained are  consistent with recent experimental  results. 

1. Introduction 

The critical behaviour of physical systems described by the quenched site-diluted Ising 
model or by a random exchange model ( R E I M )  is a subject of increasing interest. The 
general features of the transition have been elucidated by Harris and Lubensky (1974), 
Khmelnitsky (1975) and Lubensky (1975). Experimental studies of three-dimensional 
random Ising magnets have revealed sharp phase transitions with critical exponents 
clearly different from those of the pure Ising systems (for a review of relevant experi- 
ments see Thurston et a1 (1988)). The experimental data are consistent with recent 
theoretical predictions. The latter have been obtained first by Newman and Riedel 
(1982) by the scaling field method and then by a generalisation of the PadC-Bore1 
technique (Jug 1983, Mayer and Sokolov 1984) which implies replacement of Pad6 
approximants (PA)  under the Laplace integral with their two-variable counterparts. A 
possible choice for such a replacement is an approximation invented by Chisholm 
(1973). This Chisholm-Bore1 method has been used to find the 3~ R E I M  exponents 
from three-loop (Mayer and Sokolov 1983) and four-loop expansions (Mayer et a1 
1988). 

In this paper four-loop expansions of the coefficients p,,(u, U), p C ( u ,  U), q ( u ,  U )  
and v4( U, U )  of the Callan-Symanzik equation are presented. To extract critical 
properties of 3~ and ZD dilute models from these expansions two different methods 
of summation of divergent double series are used: (i) a PadC-Bore1 approximation 
and ( i i )  the ‘continuous prediction’ method realised as the first confluent form of the 
E algorithm of Wynn (Brezinski 1977, Lovitch and Marziani 1983, Marziani 1984). In  
case (i) the PA are constructed for the series in powers of an auxiliary variable A with 
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coefficients made up  of sums of terms of the fixed order in the initial series, e.g. the 
coefficient of A *  is ( a 2 , u 2 + a , , u v + a o 2 u 2 ) .  Putting A = 1 at the end gives a Pad6 
approximation to the initial series labelled [ L / M ]  with L and M being the powers of 
A in the nominator and denominator of the PA, respectively. The choice of the PA in 
this form removes ambiguities in the calculation of coefficients of the denominator, 
unavoidable in the Chisholm approximation (Chisholm 1973). Method (ii) applied 
to the Mittag-Leffler transform of the initial series produces a sequence of the same 
two-variable PA in a limiting case. This relationship allows one to regard methods (i)  
and  (ii) as two distinct ways of improvement of convergence for different sequences 
in the Pad6 table. 

The outline of this paper is as follows. In  § 2 necessary details of the computation 
of renormalisation group (RG)  functions as well as four-loop expansions for 3~ and 
2~ R E I M  are given. Section 3 is devoted to essential aspects of summation methods. 
Section 4 deals with numerical results and § 5 contains conclusions. 

2. The model and RC expansions 

In this section key points of the RG treatment of R E I M  are sketched (for details see, 
e.g., Grinstein and  Luther 1976). 

The R E I M  Hamiltonian is thermodynamically equivalent to the n-component Hamil- 
tonian of the Heisenberg model with cubic anisotropy in the limit n + 0: 

where m i -  T -  T J p )  and uo= u o ( p )  < O  is the bare coupling constant of effective 
interaction of fluctuations due  to the presence of impurities, with (1 - p )  being the 
concentration of non-magnetic impurities in the magnetic lattice. Calculations are for 
arbitrary n and  the quenching of impurities is incorporated by taking the limit n + 0 
at the end. 

Impose the zero-moments renormalisation conditions ( BrCzin et a1 1976, Grinstein 
and Luther 1976) for conventionally defined two-point and  four-point, amputated, 
single-particle irreducible vertex functions rk", rgiu) and rglL.,: 

r:)(p, - p ;  m, U,  u ) l P : = ,  = m 2  

with one more condition for the q 2  insertion: 

r:,2'(p; 4, - 4 ;  m, U, U ) J , , = ~ = ~ =  1. 

From renormalisation conditions (2.2) follow the double expansions for the renormalis- 
ation constants Z3 for the field cp,Z,. and Z , ,  for the vertices and  Z, for the q L  
insertion. The coefficients of the Callan-Symanzik equation are then defined by the 
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where uo= m'uZ,.Z;' and  uo= m'uZ,,Z;'. 
The computation of Feynman graphs contributing to equations ( 2 . 2 )  is reduced to 

the simple task of obtaining n-component field factors for the vertices involved, because 
the momentum integrals and  symmetry factors are known (Nickel et al 1977). The 
resulting expansions are summarised in tables 1 and  2 .  The series are normalised by 
a change of variables U + U/( n + 8), U +  u / 3  so that the coefficients of the terms U, u2 
and U, U' become -1 and  + 1 ,  respectively. 

Table 1. RG functions of the 3~ R E I M .  ( m n )  stands for the coefficient of the term u ' " ~ " .  

( m n )  P J u  P , / c  'I 'I1 

(00) -1 
(10) 1 1 

(01) ; 1 1 

(20) -% ?lh 

( 1 1 )  - g  H I  h 

-1 
I 

I 

I 1 1 X T  

I 0 1  I 

IOh 
-19 

_ -  
_ -  
- 
I 6  

- 
IOU 

-- 
ii 

X 
'29 

_-  
- 
2: 

- -_ 9 2  
7 2 9  (02)  -- 

(30) 0.389 922 6898 0.916 667 9106 0.000 771 3750 -0.035 767 2729 
(21 1 0.857 363 7982 2.132 996 3701 0.003 085 5001 -0.143 069 0917 
(12) 0.467 388 5589 1.478 058 1216 0.003 085 5001 -0.146 667 9876 
(03) 0.0904489508 0.351 0695980 0.0009142223 -0.0443102531 
(40) -0.447 316 0963 -1.228 6846326 0.001 589 8706 0.034 374 8466 
(31) -1.343 861 1316 -3.899273 1308 0.0084793098 0.183 332 5150 
(22) -1.221 301 3925 -4.236958 6776 0.013 245 6140 0.288 298 9658 
(13) -0.476 233 5809 -2.033 085 8783 0.008 083 0029 0.175 845 7491 
(04)  -0.075 446 6920 -0.376 526 8279 0.001 796 2229 0.039 519 5688 

It is easily seen from tables 1 and 2 that, if projected on one of the variables, any 
of the series represents the corresponding quantity of the pure Ising model or polymer 
( n  = 0 limit) model. Both series are Bore1 summable. Critical exponents from single- 
variable expansions have recently been calculated to within four decimal places through 
the conformal mapping summation method (Le Guillou and  Zinn-Justin 1980). 
However, the latter is based on subtle details of the asymptotics which are not known 
for the double expansions under consideration. At the same time earlier estimates of 
exponents derived from a Pad&-Bore1 analysis (Baker et al 1978) are close to the values 
now believed to be exact. So it seems worth trying to obtain reasonable estimates of 
3~ R E I M  critical exponents by some generalisation of the Padi-Bore1 approximation. 
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Table 2. RG functions of the 2D R E I M .  

-1 
1 
T 

-0.744 9227 
- 1.048 7858 
-0.216 0804 

1.024 1730 
2.262 7012 
1.251 3563 
0.23 1 5657 

- 1.853 2980 
-5.609 5330 
-5.165 6134 
-2.006 9852 
-0.31 1 6955 

-1 

1 

1 

-1.448 1787 
-2.173 9954 
-0.716 1736 

2.399 6662 
5.607 5358 
3.927 9375 
0.930 7664 

-5.059 3404 
-16.158 7403 
-17.731 1960 
-8.550 2770 
-1.582 3883 

0.028 6589 
0.076 4238 
0.033 9661 

-0.001 7053 
-0.006 8261 
-0.006 8261 
-0.002 0226 

0.010 1404 
0.054 0823 
0.084 4413 
0.05 1 2689 
0.01 1 3931 

I - 5  

1 
5 - _  

0.210 9766 
0.562 6048 
0.250 0466 

-0.188 8877 
-0.755 5508 
-0.773 7783 
-0.233 5882 

0.277 1106 
1.477 9232 
2.335 4310 
1.439 4247 
0.323 0886 

3. Methods of summation 

Let a physical quantity of interest be represented by a double series 

A( U, U )  = u,u'd 
I] 

(3.1) 

where aij+ ( i + j ) !  for i, j + c o  and A(u, U )  denotes any of the expansions in tables 1 
and 2.  These double series will be assumed to be Borel summable. 

(i)  Introduce a 'resolvent' series (Baker and Graves-Morris 1981) 

(3.2) 

with the additional constraint uk,(-k = 0 for 1 < k and the obvious notation for Al. Now 
the right-hand side of equation (3 .2 )  is a series in powers of A with coefficients A, and 
it is possible to construct a sequence of PA [ L /  MI to the order allowed by the conditions 
L + M = 4 and L 2 M, since the evaluation of critical exponents implies determination 
of the roots of functions &(U, U )  and &(U, U). The sum of the series is then approxi- 
mated by 

(3.3) 

These approximants hold the projection property of the initial series: if U or U is put 
equal to zero, equation (3 .3 )  reduces to the conventional single-variable PA. The same 
procedure will be used for analytical continuation of the Borel-transformed series: 

A( U, U )  = [ L /  MI1 * = , . 

in the Borel sum defined by 

(3 .4 )  

A( U, u )  = lox exp(-z)B( UZ, u z )  dz. (3 .5)  



Critical exponents of the dilute Ising model 2819 

(ii) Another summation method is the first confluent form of the E algorithm of 
Wynn (Brezinski 1977, Lovitch and Marziani 1983, Marziani 1984) applied to the sum 
formally represented by an integral (Sansone and Gerretsen 1960) 

A( U, U )  = exp(-z)BM( uzB, uzp) d z  lom 
with BM being the Mittag-Leffler transform: 

(3.7) 

For p = 1, expressions (3.6) and (3.7) give the Bore1 sum defined by equations (3.4) 

The evaluation of the sum (3.6) amounts to the following. Introduce a function 
and (3.5). A better choice here is P = 2, as is argued below. 

S ( u ,  U ;  t )  = [o‘exp(-z)BM(uzp, uzp) dz 

so that 

The limit (3.8) could be replaced by the limit of a convergent E sequence (Brezinski 1977) 

lim S( t )  = lim E*,,,( t o )  
I - + =  m-oc 

m ( to) = H 2: 1 ( to)/ H t o )  m = 0 , 1 , 2 ,  . . .  (3.9) 

where to is an arbitrary value of the variable t and H z ) ( t )  are Hankel functional 
determinants: 

Si::” -‘ ’ (,) Si::” “ ‘  

Sl:: - ’ ) S ; y ’  ... 

s(A) 
(3.10) 

SI k t 2 m - 2 )  
( 1 )  

To start the iterative process in the formula (3.9) one needs initial conditions. These 
are Hik’= 1, Hlk’= S ‘ k ’ ,  SI,”=O, Sip;= S ( t ) .  The functions Si:; in equation (3.10) 
are derivatives of S ( t )  with respect to t :  

It is known that, for p = 1, the 0) sequence reproduces the PA sequence 
[ m  - l / m ]  (Marziani 1983). The proof concerns the single-variable case, but is simply 
generalised to more than one variable. It turns out that, for the double series, the 
emerging approximants are given just by equation (3.3) for L < M .  Thus the E algorithm 
is related to the two-variable PA to the resolvent series in the limiting case t o = O .  
However, the PA in the sequence [ m  - l / m ]  have the degree of numerator less than 
that of the denominator, which makes them inappropriate for the evaluation of the 
zeros of P u ( u ,  U )  and P o (  U, U). On the other hand, if p = 2, equation (3.9) generates 
a different PA sequence: [ O / O ] ,  [0/1], [1/1], [1/2], [2/2], . . . , i .e. the first convergents 
of the continued fraction constructed from the series (3.1) (Baker and Graves-Morris 
1981). This is how the diagonal PA enter the scene to give a better convergent scheme. 
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As an  aside, the first confluent form of the E algorithm of Wynn can be viewed as 
a kind of perturbative improvement of convergence of the underlying PA sequence, 
the latter appearing at  to = 0. Varying the parameter to it is possible to accelerate 
convergence of the E sequence so it is highly desirable, especially for comparatively 
short initial series, to have as a 'zero-order approximation' the sequence including 
diagonal PA; hence the motivation to take /3 = 2. In addition, p = 2 provides better 
convergence for the E sequence, as has been shown for the Rayleigh-Schrodinger 
perturbation series in the anharmonic oscillator (Marziani 1984) and Yukawa and  
funnel-like potential (Mayer 1988) cases. 

The parameter to is arbitrary only if an infinite number of terms is known. For a 
series of finite length to is chosen to achieve fast convergence of the E sequence 
(Marziani 1984, Mayer 1988). Since the R E I M  series are rather short, i t  is hardly 
possible to compare rates of convergence for different to .  Instead I use the projection 
property mentioned above and  take the value to at which Ising ( U  = 0) and  polymer 
( U  = 0) critical exponents are as close as possible to their exact values. The fixed-point 
(FP)  coordinates and  critical exponents of the R E I M  are then calculated for this t o .  
The R E I M  exponents are believed to be in the same error range as the corresponding 
values in the pure systems. 

4. Numerical results 

To reduce the uncertainty in exponent values the summation procedures are applied 
to the expansions v( U, U )  and v4( U, U )  from tables 1 and  2, and also to the expansions 
obtained from these through scaling relations, e.g. v( U, v )  = [2+  v4(u, U )  - v( U, U)]- ' .  
As is well known, a pair of critical exponents is sufficient for calculation of the whole 
set of exponents in the given universality class. From numerical values of different 
pairs of exponents, say y and v or y and 7, etc, the rest is calculable by scaling 
relations. The results are centred at a certain value which is assumed as the final 
answer. Apart from the random FP (U* < 0, U* > O ) ,  the set of RG equations produces 
polymer F P  ( u * > O ,  u*=O)  and Ising FP ( U *  =0,  u * > O ) .  For the last two FP all 
exponents are known. 

It turns out that the [3/1] PadC-Bore1 approximation provides the best estimates 
for the critical exponents of Ising and polymer models in the 3~ case. It is natural to 
suggest that the same is true for exponents of the dilute model. The E algorithm of 
Wynn requires t,,=0.48 as a condition for the best fit to the known values. Table 3 
contains estimates of the 3~ R E I M  exponents along with some averaged experimental 
data (Thurston et a1 1988). Critical exponents derived from conformal Borel analysis 
of single-variable series (Le Guillou and Zinn-Justin 1980) are included in table 3 for 
comparison. The Borel summation of the E expansions to the order O( E ' )  gives close, 
though slightly differing, results (Le Guillou and  Zinn-Justin 1985). 

Other possible zpproximations to the Borel transformed series, i.e. [1 /1 ] ,  [2/1] and 
[2/2] (if not excluded due  to poles on the positive semi-axis), give close exponent 
values which could be used to check convergence properties of the Pade-Bore1 scheme 
and to cefine error bounds. 

Similar exponent values for the 3~ R E I M  have been obtained recently through 
Chisholm-Bore1 analysis of the four-loop expansions: y = 1.326, v = 0.67, a = -0.01 1 
and P = 0.342 (Mayer et a1 1988). The differences between values obtained by different 
methods reflect uncertainties in the results. 
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Table 3. 3 D  R E l M  exponents from four-loop expansions. R, I and U stand for random, 
Ising and unphysical (polymer), respectively. A W  indicates the E algorithm of Wynn 
( I , ,  = 0.48) and C B  means the conformal mapping Borel technique (Le Guillou and Zinn- 
Justin 1980). 

FP U" U* Y Y ff 

R [3/1] -0.6839 2.2361 
A W  -0.5874 2.1782 
Experiment 
(Thurston ef a /  1988) 

I [3/11 0 1.4299 
A W  0 1.4586 
C B  0 1.416 1 5 

U [3/1] 1.4395 0 
A W  1.4547 0 
C B  1.421*8 0 

1.321 0.6714 -0.013 
1.318 0.6680 -0.004 
1 .3714 0 .7012 -0,0917 

1.240 0.6301 0.110 
1.240 0.6282 0.116 
1.241 1 2  0.6300* 15 0.1100*45 

1.162 0.5895 0.232 
1.163 0.5880 0.236 
1.1615120 0.5880*15 0.2360145 

P 

0.348 
0.343 
0.34 f 1 

0.325 
0.322 
0.3250r 15 

0.303 
0.301 
0.3020 i 15 

The two summation methods are additionally tested by application to exactly 
solvable 2~ models. The critical exponents of the 2~ Ising model and 2~ polymer limit 
could be extracted from scaling dimensions of certain operators in conformal invariant 
theories (Nienhuis 1984, Dotsenko and Fateev 1984) and from Nienhuis's conjectures 
(Nienhuis 1982). The conjectures give exact critical exponents for a continuous range 
of the number of components n :  l n / s 2 .  Putting n equal to 1 or 0 results in Ising or 
polymer exponents, respectively. The exact and  approximated values are compared 
in table 4 where exponents for the random FP are also included as well as recent 
experimental data (Hagen et a f  1987). The ZD R E I M  is also exactly solvable. Moreover, 
two different sets of exact results have been published. On the one hand, Dotsenko 
and  Dotsenko (1983) predict 7 = p = 0, y = 2. Their results have been questioned by 
Shalayev (1984) who has pointed out that the 2~ R E I M  is governed by the same set of 
exponents as the pure Ising model. The only effect of quenched impurities is to induce 
logarithmic corrections to the thermodynamic functions (see also Shankar 1987). The 
present results are consistent with this latter conclusion and  with experimental data 
(for a review of various experiments see Lyuksyutov et a1 (1988)). No indication of 
a new set of exponents has been found. 

Table 4. ZD R E l M  exponents for fOur-lOOp expansions. The notation is the same as for 
table 3. For A W  f,,=0.13. 

F P  U" U" Y Y 

R [3/1] -0.0898 1.9866 
A W  -0.1870 2.3835 
Experiment 
(Hagen et a /  1987) 

1 W11 0 1.8836 
A W  0 2.1666 
Exact 

[3/11 1.9302 0 
AW 2.0963 0 
Exact 

1.002 
0.979 
1 .0816 

0.251 
0.139 

1.753 
1.821 
1 .7517 

0.982 
0.941 
1 

0.796 
0.7513 
1 
1 

0.250 
0.139 
I 
.I 

0.235 
0.1 I O  

1.719 
1.751 
I 

1.405 
1.420 
12 
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It follows from the exact solution of the ZD REIM (Shalayev 1984) that there should 
be no random FP that nevertheless appears in table 4. I t  could be considered as ‘split’ 
from the Ising FP due to the relatively low order of approximation, all the more so 
since U *  is small as compared with U*, and suffers substantial variations as the order 
of approximation is changed (e.g. for the [2/2] PadC-Bore1 approximation U *  is nearly 
twice the value for [3/1], while U* remains about the same). 

A further test is provided by the 2~ O ( n )  model with the number of components 
n formally put equal to -1. The conjectures (Nienhuis 1982) give exact exponents 
which, along with results obtained in [3/1] and [2/2] Padi-Bore1 approximations, are 
included in table 5. 

The agreement between approximated and exact values is remarkable. 

Table 5. Critical exponents for ZD O ( n )  ( n  = -1) model 

Y 9 Y 

[3/1] 0.6302 0.1647 1.566 
[ 2 / 2 ]  0.6280 0.1432 1.1660 

1 37 
,z - Exact 2 20 

5. Summary 

Four-loop expansions of the coefficients of the Callan-Symanzik equation for the 3D 
and 2~ R E I M  are presented. To find fixed-point coordinates and to estimate critical 
exponents two methods of summation of double series are used: a PadC-Bore1 approxi- 
mation and the first confluent form of the e algorithm of Wynn. When projected on 
one of the variables each method is reduced to its single-variable version. 

The order [L/M] of the PadC-Bore1 approximation is chosen so as to provide the 
best fit to the single-variable exponents. Exact critical exponents for 2~ single-variable 
problems are known from conformal invariant theories. For 3~ models the exponents 
have been calculated to great accuracy by Le Guillou and Zinn-Justin (1980, 1985). 
For the E algorithm of Wynn the free parameter to is fixed. Critical exponents of Z D  

and 3~ dilute models are then estimated within this framework. These procedures give 
critical exponents of the 2~ dilute Ising model coinciding with those of the pure king 
model, in agreement with exact solutions based on the fermionic representation 
(Shalayev 1984, Shankar 1987). It is seen from table 4 that summation of 2~ double 
expansions gives exponents consistent with exact results. In addition, error bounds 
for the Z D  values are usually much larger than in the 3~ case (Le Guillou and Zinn-Justin 
1980, 1985). All this suggests that the present estimates for the 3~ dilute Ising model 
should be rather close to the true values. 

Experimental data for the systems described by the 3~ R E I M  have relatively large 
error bars which overlap the range of the present estimates except for the susceptibility 
exponent y. 

Thus the double expansions for systems with quenched impurities suspected to be 
Bore1 non-summable (Bray et a1 1987) are confirmed to produce results consistent 
with the exact solution for the ZD R E I M  and with experimental data for the 3~ R E I M .  
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